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CALCULATION OF VIBRATION CHARACTERISTICS OF

A 45 ° DELTA-WING SPEC]}4EN

By John M. Hedgepeth and Paul G. Waner, Jr.

S t_vL_RY

Generalized influence coefficients are calculated by the method of

NACA TN 3640 for a large-scale, built-up, 45 ° delta-wing specimen. These

are used together with appropriate generalized masses to obtain the

natural modes and frequencies in symmetric and antisymmetric free-free

vibration. The resulting frequencies are compared with those obtained

experimentally and are found to be consistently high. Possible sources

of the disparities are discussed.

INTRODUCTION

The increased importance of flutter and other aeroelastic phenomena

has made the accurate determination of structural stiffness properties

a necessary part of aircraft design. For this reason, the Langley

Structures Research Division has been conducting a program of experimental

and theoretical research of the deflection and vibration properties of

built-up wing structures. One of the test structures is the large-scale

45 ° delta-wing specimen described in reference i. Reference i also con-

tains the details of the static and vibration tests. The experimental

data obtained from this specimen have been used to assess the accuracy

of two analytical methods: that of Levy (ref. 2) and the one proposed

by Stein and Sanders (ref. 3). These assessments are summarized in ref-

erences 4 and 5.

The purpose of the present paper is to report the details of the

calculations made by the Stein-Sanders method. Influence coefficients

are first computed by the procedure outlined in reference 3. These coef-

ficients are then used in conjunction with the mass properties to find

the natural modes and frequencies of free-free vibration by means of

matrix iteration.
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SYMBOLS

All quantities are in pound-inch-second units.

ak

BOO, BOI, BII

cl(Y), c2(Y)

E

g

Z

m

mk

N

Po'PI'P2

w

x,y

x s

7

6

_p

stiffness coefficient for covers (k = 0, i, 2, 3, 4)

parameters defined by equation (15)

trailing- and leading-edge coordinates, respectively

Young's modulus of elasticity

acceleration due to gravity

generalized influence-coefficient matrix

semispan

mass per unit area

generalized distributed mass (k = 0, i, 2, 3, 4)

generalized concentrated mass (k = 0, i, 2, 3, 4)

tip-station index, Z/c

load, moment, and second moment about y-axis

deflection

coordinate system (fig. i)

x-coordinate of spar

spar or stringer stiffness parameter

rib stiffness parameter

spacing between stations

parameter defined by equation (23)

potential energy of loads
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_O'qDl'_2

@0'@i'_2

(O

[]
II
LJ

deflection, slope, and half-curvature at y-axis (supported

structure)

deflection, slope, and half-curvature at y-axis (free-

free structure)

circular frequency

rectangular matrix

column matrix

row matrix

DESCRIPTION OF SPECIMEN

A schematic drawing of the delta-wing specimen is shown in figure i.

It has a semispan of 112 inches, a root chord of 96 inches, and a leading-

edge sweep of 45 ° • The specimen is constructed entirely of 2024 aluminum

alloy which is assumed to have a Young's modulus of 10.6 x 106 psi and

a Poisson's ratio of 1/3. The cover sheets are relatively thin and are

stiffened by numerous stringers. There are four spanwise spars and a

leading-edge spar. Closely spaced ribs provide chordwise stiffening.

The dimensions shown in figure i are nominal and were used in the

calculations for locating stations, spars, and ribs. Precise dimensions

and details of the construction and of the weight distribution of the

specimen are given in reference i. Points of interest to be noted are:
I

the depth tapers in the spanwise direction from 53 inches at the carry-

through section to i_ inches at the tip but is constant in the chordwise
4

direction. With the exception of the leading-edge spar, all spars are

unspliced for their entire length and are reinforced with heavy caps.

The leading-edge spar is spliced at the center line and has no cap. The

ribs are segmented, being broken at the spars. The cover sheets are of

uniform thickness and are continuous across the center line. The stringers

are made of equal-legged angles, are continuous across the center line,

and are riveted to the outside of the covers for convenience in construc-

tion. The entire structure is symmetrical in the spanwise and depthwise

directions and there are no cutouts.



CALCULATIONOFGENERALIZEDINFLUENCECOEFFICIENTS

In the calculations, the approach outlined in reference 3 was
followed in detail. The end product is a matrix which gives the deflec-
tion q_O'chordwise slope q_l' and chordwise half-curvature q_2 of the
neutral surface at a number of equally spaced stations along the trailing
edge (y-axis) in terms of the total load PO' moment Pl' and second

moment P2 at each station. This generalized influence-coefflcient
matrix [g] is obtained from the inverse of a matrix [A] which is
formulated from the stiffness properties of the various parts of the
structure. The calculations leading to the formulation of [A] are

illustrated herein by following the step-by-step procedure in the section

entitled "Mechanics of Application" in reference 3. The numbers in paren-

theses refer to the numbers of the steps in that paper, and the reader

is advised to follow those steps in detail in conjunction with the present

paper. All numerical values are in inch-pound units and are used with

more significant figures than the actual measurements contain in order
to avoid accumulated round-off errors.

(i), (2) The chosen coordinate system and stations are indicated in

figure 1. The y-axis lies along the center line of the web of the rear

spar and the stations are spaced at seven 16-inch intervals. Thus the

stations coincide very closely with the rivet lines of every second rib.

Note that the positive direction of the x-axis is opposite to that of

reference 3. This change was made in order that points on the structure

would have positive values of x. No change in notation is necessary

except that cl(Y) and c2(Y) denote the x-position of the trailing

edge and leading (swept) edge, respectively, instead of the reverse. Thus

Cl(y): 0

c2(Y) = 96 (0 < y < 16)

c2(y): 112- y (16 < y < i12)

(3) Because of symmetry, the neutral surface coincides with the

middle surface. The stiffness properties of the spars and ribs are given

in tables 2 and 3 of reference 1. The leading-edge spar (spar 5) must

be treated as two separate spars 5(a) and 5(b). The area of the stringers,

the z-coordinate of the centroid of the stringers, the thickness of the

cover sheets, and the z-coordinate of the midplane of the cover sheets

are given in table 1 of reference 1. The x-coordinates of the stringers

can be found from figure 2 of reference 1 if 5.25 inches is used as the
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distance between the center line of the rear spar and the rivet line of

the rearmost stringer.

(4) The required values of the cover stiffness parameters ak, n

and ak,n+ ! are given in table I. They and all succeeding values of
2

stiffness have been divided by E, which factor will ultimately reappear

as a multiplier on the generalized influence-coefficient matrix.

(5), (6), (7) The values of effective stiffness _s,n and location

Xs, n for the swept spar 5(b) are given in table II. The contributions

of the unswept spars and the stringers are included in the combined

fashion suggested in step (i0) of reference 3. Consequently, the summed

-- 2 x3 and
quantities _ _s,n, _ _s,nXs,n, _ _s,nXs,n, Z _s_n s,n

, - 4_s,nXs,n are listed in table II.

(8) The values of the rib stiffness parameter 7 for each rib are

given in table III; the ribs are numbered in accordance with their

station locations, either on or halfway between stations. It should be
noted that the rib stiffnesses have been reduced somewhat (about 5 per-

cent) below those in reference i in order to account for the ribs' being

broken at the spars.

From the foregoing quantities, the matrix [A] can be set up,

inverted, and modified to obtain the [g] matrix. Tables IV(a) and IV(b)

show the results for the cases of symmetric deformation and antisymmetric

deformation, respectively. In either case,

 Ipl (1)

For symmetric deformation I 91 is a 24-element column matrix: eight

90's, eight _l'S, and eight 92's for stations 0 through 7. The column

matrix Ip I is similarly made up of eight Po'S, Pl'S, and P2'S. For

antisymmetric deformation I_ I and Ip I are 21-element matrices, the

quantities at the center line not appearing because they are always zero.

Note that the boundary conditions specified in reference 3 require that

and be zero in the symmetric case and that _0,i be zero_0,0 _i,0

in the antisymmetric case. Space has been provided for these quantities

in the matrix formulation in order to allow the introduction of rigid-body
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motions necessary for the analysis of free-free vibrations. At this

point, the rows of zeros in the [g] matrices are sufficient to satisfy

the boundary conditions on the supported structure.

DETERMINATION OF GENERALIZED MASS MATRIX

In this section, the calculation of the generalized mass matrix

needed for the determination of vibration modes and frequencies is out-

lined. Since the mechanics of the application of the Stein-Sanders

approach to vibration problems has not heretofore been described, a

detailed treatment is desirable here.

As has been pointed out in reference 3, the generalized loads Pk, n

are given in terms of the potential energy of the applied loads Hp by

Pk, n =

_np
(2)

where, for sinusoidal natural vibration,

lip w2 foZfC2 mw2d x _2 f0Zfc c2- dy- m(_ 0 + X_l + x2_2,2dx) dy

2g Cl 2g i

(3)

Note that w = _0 + X_l + x2_2 ' where the _k'S are the actual gener-

alized deflections which include possible rigid-body motions. The use

in equation (2) rather than _k,n as was employed in refer-of ¢k,n

ence 3, is valid here since the relation between the inertia loading

and the vibration amplitude is independent of the particular boundary

conditions on the structure. Carrying out the integration in the chord-

wise direction yields

- 2g 0%2 + + m2(2l_0tl 2 + ¢12) + 2m3t_1ll 2 + m4C22tdy

(4)

where

c2

= / mxkdxm k

cI

(5)
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The functions m k are not, in general, continuous. Such things

as structural discontinuities and fuel cells will produce finite dis-

continuities in mk; concentrated masses and ribs will produce impulse-

type discontinuities. It is convenient to assume temporarily that there

are no discontinuities, and then to correct for their effects subse-

quently. Thus, for continuous mk, trapezoidal integration of equa-

tion (4) gives

_p _ - __

_2ef_ 2 2 i 2

2g \2 mo,o¢o,0 + mo,l_O,1 + " " " + mO,N-l_O,N-I + 2 mO,NWO, N +

ml,O_O,O@l, 0 + 2ml,l@O,l_l,I + . . . + 2mI,N_I_O,N_I_I,N_ I + mI,N_O,N_I, N +

• • ° ° • ° ° • • • ° , ° ° • • ° ° • ° ° ° • ° • • • • ° ° • ° ° • . ° •

i 2 2 2 i m4,N_2,N
m4'0¢2'0 + m4'i_2'1 + " " " + m4'N-I%2'N-I + 2 (6)

where the equally spaced stations are numbered from 0 at the center

line to N at the tip.

PO

Using equation (2) yields

2 emo, i

g

_ ml, O

eml, i

E

m2,0

era2,1

emO,N-i

eml,N-i

em2,N_ I

E
ml, N

_2 (7)
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and Pl and P2 can be expressed in a similar fashion.

Thus,

p01 2
Pl = _--

g

MO MI M2

M I M 2 M 3

M2 M3 M_

¢0

_2

(8)

or

(9)

where the M k are (N + i) X (N + i) matrices.

continuous m k to these matrices is given by

_mk_l

cmk,N-i

The contribution of the

A finite discontinuity in mk can be handled in several ways, but

the simplest is merely to alter the value of m k at the station nearest

the discontinuity. This can be done in precisely the same manner as is

outlined for discontinuous ak in step (4) of the step-by-step proce-

dure in reference 3.

The energy due to a concentrated mass or a rib mass located at a

distance _d to the right of station j is
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m

where the mk's

defining m k.

the values of

are integrals across the chord analogous to those

Note that linear interpolation has been used to specify

@n between stations. Using equation (2) gives

f
PO, j - g

(i <'-d)2_2*2,j + d(l - d)_2*2,j+l}

PO, j+I = _(I- d)%*O,j + d2_o*o,j+l + d(l- d)_l,l,j + d_l%l,j+l +

d(l - a)_2, j + a2_2_2,j+1_

)

(io)

and so forth. Thus it can be seen that the effects of the concentration

be incorporated by including in each FM_ matrix a block of termscan

like

(i- d)2{k d(l- d){k

d(l- k k

The upper left-hand element is to be located in the (J + i) row and

column. All the concentrations are handled in this manner.

For the delta-wing specimen under consideration the generalized

mass matrix is given in table V. The computed numbers are based on the

mass (weight) data given in tables 2, 4, and 5 and figure 4 of refer-

ence i. The generalized mass matrix also includes the masses of shaker

armatures (2.0 pounds each) and pickups (0.7 pound each) located as

shown in figure i0 of reference i.

In order to determine free-free modes and frequencies, the con-

straining conditions used in obtaining the influence coefficients must

be relaxed. The freeing procedure leading to the calculation of these

vibration characteristics is discussed in the next section.

FREE-FREE VIBRATION ANALYSIS

Symmetric Modes

For symmetric free-free vibration the actual generalized deflec-

tion _n is related to the constrained generalized deflection _n by

the following matrix equation:
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I*I = I_1+ +o,o_ol + *l,OtIll (ll)

where IIol and l_llare (for the present structure) 24-element columns.

The first eight elements of ilol are equal to 1 and all others are O;

the second eight elements of fill are 1 and the rest are O. The term

_0,0 IIol thus allows rigid-body translation; the term _i,0 fill allows

rigid-body pitching.

ExpressingI_1 intermsof IPl (eq. (z)) andthen Ipl interms
of I_I (eq (9))yields

I+1 2: _-[g][Mll+l + +o,o1_oI+ +l,ol_ll (12)

The unknowns _0,0 and @i,0 can be found from the conditions for self-

equilibration of the inertia loading; that is,

L_oJlpl: o _ (13)
71] Ipl =o J

wherethe rows [I0] and LIlJ arethetransposesof thecorresponding
columns. Multiplying equation (12) by [M] andthen by Lioj and LIli
gives, respectively,

o : _Lio] [,] [g] [M]I_i + Boo,o,o+ BOl*l,0[ (14)
0 u_'2 JTill] [M][g] [M]I_/I + B10_0,0+ Blfll,0

where the left-hand sides are 0 by virtue of equation (13) and

Boo= JoJ[M]11oI

Bo1 = Blo

= J0] [M] IIll

Bll = _l] [M] IIll

(_5)

Note that BOO is half the mass of the specimen, BOI is half the mass

moment of the specimen about the trailing edge, and Bll is half the

mass moment of inertia of the specimen about the trailing edge.
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Equations (14) can be solved for _0,0 and _i,0" The result is

-<)

g (BooBII - B01

(16)

Substitution of _0,0 and @i,0 into equation (12) yields,

finally,

= T [_] + _sl [_][M]I*I (17)

where [I] is the identity matrix and

[ms_] = l 2 {B°mlI°I[IlJ + %11Ili _o] -
BooBII - BOI

BooIZml[I_ - Bll IIolFoJ)[M] (18)

Equation (17) is in a suitable form to be handled by standard

iteration techniques in order to calculate the natural modes and

frequencies.

#mtisymmetric Modes

For antisymmetrical free-free vibration, the following relationship
exists:

i*I-=Iml+ %,llrl (19)

where Irf is (for the present structure) a 21-element column with the

first seven elements equal to the integers from i to 7 and the other

elements equal to 0. The term _O,llrl allows freedom of zig!d-body

rolling.

Using equations (i) and (9) gives

I#I _[g][M]I*I+= g _ %,llrl (20)
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Note that in this case [M7 is a matrix of twenty-first order obtained

from the one in table V by deleting the first, ninth, and seventeenth

rows and columns of that matrix. It should be recalled that this reduc-

tion of order comes about because the generalized deflections at the

center line (station zero) are necessarily zero.

Self-equilibrium of the inertia rolling moments requires that

Lr]Ipl= 0 (21)

or

where

2
o = _-LrJ[M3[4EElI_I+ #_o,, (22)

_= [rJ [M_Ir I (23)

is the mass moment of the half-span about the center line.

where

and substituting in equation (20) gives
*0,i

I_I= -E (24)

Solving for

IrlLd [Ml (2_)

Equation (24) is in a form suitable for iteration.

RESULTS AND DISCUSSION

The first four modes and frequencies for free-free symmetric and

antisymmetric vibration were calculated by matrix iteration from equa-

tions (17) and (24). The results are given in tables VI and VII and in

figure 2. In table VI are shown the frequencies obtained from the Stein-

Sanders method, the frequencies measured experimentally (ref. i), and

the percentage difference. In table VII are shown the calculated mode

shapes. These are given in terms of the values of _k at each station

for each mode. The node-line patterns for the various modes are shown in

figure 2. The node-line locations at each station were calculated from

the equation

_0 + XWl + x2_2 = 0
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Also shown for comparison are the node-line patterns obtained experi-

mentally (ref. i).

As shown by figure 2, the node lines calculated by the Stein-Sanders

method agree extremely well with those obtained experimentally. On the

other hand, the errors in the calculated frequencies shown in table VI

are large, especially for the higher modes. These errors are most prob-

ably due to inaccuracies in the generalized influence coefficients; these

inaccuracies, in turn, arise from basic shortcomings of the Stein-Sanders

method when applied to this particular structure. The most serious of

these are the lack of enough freedom in the chordwise shape of the deflec-

tion and the neglect of the effects of transverse shear. The magnitude

of these effects can be visualized from the comparison of theoretical and

experimental static deflections under a uniform load shown in figure 3.

Figure 3(a) shows the deflections along the odd-numbered stations

due to a uniform loading of i psi for the specimen mounted on the three-

point support used in the experiment (ref. i). Figure 3(b) shows the

deflections for the specimen cantilevered at the root chord. The theo-

retical deflections were calculated from generalized influence coeffi-

cients modified for the different support conditions by the procedure

outlined in appendix A of reference 3. The experimental deflections

were calculated from the experimental influence coefficients tabulated
in reference I.

Figure 3 shows large errors in the theoretical deflections, partic-

ularly in the region close to the center line. Here the curvatures in

the chordwise direction are large. Going from the three-point support

to the cantilever support greatly reduces the magnitude of the curvature

in the chordwise direction and improves the theoretical results, as can

be seen from the solid curves in figure 4. Further improvement results

from including approximately the effects of transverse shear, as illus-

trated by the long-and-short-dashed curves. The transverse-shear cor-

rections, which were obtained merely by adding the shear deflections of

the structure treated as a beam to the solid-line deflections, bring

the theoretical results into excellent agreement with the experimental

results.

CONCLUDING REMARKB

The poor agreement between theoretical and experimental vibration

frequencies indicates that the Stein-Sanders method is unsatisfactory

for the analysis of the particular delta-wing specimen treated herein.

To conclude that the method is unsatisfactory for more realistic struc-

tures, however, would be erroneous since the present specimen had no
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extra stiffening in the chordwise direction such as would be afforded by

the fuselage in an actual case. The static-deflection results imply that

a significant improvement in the accuracy would result from such stif-

fening. On the other hand, substantial errors due to tranverse-shear

effects would still occur unless these effects were incorporated into

the analysis.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., October 22, 1958.
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TABLE III

RIB STIFFNESS PARAMETERS

Station,

n

0

i

2

3

_n

E

193.170

1115.42

228.971

127.304

386.339

299.974

174.647

89.9428

4

5

6

7

63.1952

24.7148

7.10490

0

40. 9168

14.54O3

2.34160
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TABLE IV.- G_IZED ]Z{FLUENCE-COEFFICIEt_ MATRIX

(a) Symmetrical Deformation

[%o go1 go_I[g] = _ glO gll gl ; glJ = gji'

Lg20g21

go0 = 10-2

O O O O O 0 0 0

0 1.4605 2.5371 2.9655 3.4715 3.9320 4.5812 4.8134

0 2.5571 6.2959 9.0016 11.1185 12.9979 14.8160 16.5740

0 2.9653 9.0016 16.5142 22.0266 26.7455 31.2486 55.6145

0 5.4715 i1.1185 22.0266 54.8672 44.9405 54.2410 65.2448

0 5.9520 12.9979 26.7455 44.9405 66.4296 84.4999 101.7525

0 4.5812 14.8160 51.2486 54.2410 84.4999 121.7644 15_.7405

0 4.8134 16.5740 35.6145 65.2448 101.7525 154.7405 250.5527

gOl = 10-4

0 0 0 0 0 0 0 0

0 -5.2356 -7.5041 -8.1018 -8.5574 -8.4477 -8.6696 -8.6415

0 -7.3528 -18.4467 -22.7682 -24.1506 -24.5855 -25.5639 -25.2526

0 -8.2481 -23.0549 -40.2180 -45.6460 -47.0877 -48.7870 -48.4920

0 -8.6298 -24.8620 -46.4386 -71.4180 -77.5319 -80.6397 -79.8611

0 -8.8514 -25.7484 -48.8855 -79.1175 -116.6625 -125.5510 -122.8877

0 -9.0595 -26.4959 -50.6555 -82.8500 -126.8145 -191.9687 -182.5040

0 -9.2574 -27.1494 -52.1841 -86.0005 -153.1657 -205.4808 -286.4404

go2 = l°-6

gll = 10-6

g12 = 1°-8

F 0 0 0 O O O O O-4.5894 -0.5525 0.9545 0.9774 0.5545 0.1588 0.6541 0.0565

1-10.4855 -4.8745 5.0949 4.2470 2.5854 0.7065 2.0006 -0.4154

1-16.4006 -10.5071 -0.7644 10.1746 7.8675 2.5061 5.8709 -2.5061

|-21.7915 -16.0519 -6.5518 5.2467 19.6448 9.0176 6.5516 -9.0851

_-26.5575 -21.0519 -12.5566 -2.4854 9.9552 50.4915 10.8050 -57.5008

_-50.9116 -25.6066 -17.7945 -10.1825 -5.3790 5.2410 48.4020 -176.2185

L-55.0030 -29.9262 -22.9798 -17.5840 -16.4659 -23.7835 -44.7527 -755.9285

0 0 0 0 0 0 0 0 1

0 28.5524 37.9775 40.5692 59.9856 59.1644 59.1049 59.0262

0 57.9775 95.1750 111.8504 i12.2741 109.1631 108.4191 108.0850

0 40.5652 111.8504 204.5901 218.2796 210.5924 206.4018 205-5515

0 59.9856 112.2741 218.2796 572.4092 572.8470 556.8959 355.0658

0 59.1644 109.1651 210.5924 572.8470 667.7583 654.5781 616.0558

0 59.1042 108.4191 206.4018 556.8959 654.5781 1,527.3654 1,256.7512

0 59.0262 108.0850 205.5515 555.0658 616.0558 1,236.7512 7,756.8221J

25.05948 0 0 0 0 0-1.4518 -9.8057 -9.9815 -6.7716 -5.5508

55.9159 18.0225 -55.8256 -45.4052 -50.6770 -14.8455

78.6843 41.5218 -24.2851 -i15.106_ -98.2425 -51.0152

97.5257 61.5070 -2.7511 -102.7624 -275.8926 -179.4049

109.6814 74.8582 14.8797 -74.5519 -242.4892 -666.7485

I 117.1688 82.8651 25.0295 -55.9268 -195.0165 -525.2459

i16.9185 82.6621 24.9975 -55.5751 -189.5051 -498.6749

0

-2.7615

-9.1998
-25.9552
-68.4267

-255.1988
-1,954.5729

-1,808.5827

0 1-2.0778

-6.4535 |
-16.85941
-4o.1844 |
-_.2c_41
37.4970 |

49,695.94101
J

[159.4650 131.6596 100.0772 69.710_ 45.9358 24.5883 6.5715 21.2506 |

q

151.6596 152.8085 110.6374 80.9280 51.9840 28.9754 9.5431 24.4307

J100.0772 110.6574 158.8273 118.6105 80.5315 44.0552 16.5945 52.7155

g22 = lO-10 69.7104 80.9280 i18.6105 210.1571 171.7124 97.7948 57.5284 58.8470
45.9538 51.9840 80.5515 171.7124 459.4675 324.9323 122.8515 148.5812

24.5883 28.9754 44.0552 97.7948 324.9325 1417.5669 597.8610 461.6689

6.5715 9.3451 16.3945 57.5284 122.8515 597.8610 6,995.8497 5,675.1495

21.2506 24.4307 52.7155 58.8470 148.5812 461.6689 5,673.1495 511,957.79J
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TAEI_ IV.- GENERALIZED INFI/_NCE-COEFFICIENT MATRIX - Concluded

(b) Antisymmetrical Deformation

go0
= 10-2

g°° %1 %2
[g] = glO gll g12

g20 g21 g22

; giJ - gji'

0 0 0 0 0 0 0

0 2.57123 4.56403 5.83200 7.20010 8.55451 9.91682

0 4.56403 10.9163 15.9004 20.5374 24.6510 28.9694

0 5.83200 15.9004 28.5161 58.7284 48.5060 57.8162

0 7.20010 20.3374 38.7284 60.8982 79.8337 98.2626

0 8.55431 24.6510 48.3060 79-8337 i18.5971 153.4663

0 9.91682 28.9694 57.8162 98.2626 153.4663 231.7661 J

gOl = 10-4

I 0 0 0 0 0 0 0

1.79887 -4.55310 -6.08128 -5.78413 -5.15891 -4.74374 -4.72819

4.61612 -2.40976 -14.3545 -16.2288 -15.2881 -14.4178 -14.5140

8.03087 2.74318 -11.0121 -30.4154 -52.4931 -31.6401 -31.1675

11.7777 9.04169 -3.65303 -26.2776 -58.5211 -61.5550 -59.4878

15.6755 15.6450 4.56756 -17.9999 -55.1910 -113.1384 -104.2097

19.6327 22.3059 12.8404 -9.42059 -48.4080 -112.0715 -195.6752

go2 = l°-6

0 0 0 0 0 0 0

0.0490400 5.96449 6-36279 4-39499 2.11223 0.506115 0.880214

0.115012 7.32222 16.6890 13.0266 6-0558 1.03498 0.696020

0.186129 6.90149 16.3851 28.5729 14.8358 1-72992 -4.31509

0.257125 6.06107 15.0697 22-1589 38.5729 4.85005 -50.3993

0.526777 5.26017 9.53703 12-1339 15.4922 41.0693 -167.0757

0.395885 4.53113 6.22020 2.38588 -11.3255 -53.2766 -722.6711

gll =
i0 -6

I 12.7550 20.47}9 25.7624 29.5069

20.4739 75.8791 91.9924 95.6147

25.7624 91.9924 183.5723 198.1404

29-5069 95.6147 198.1404 550-7493

32.0013 95.2772 191.5197 350.4543

3}.6062 95-2198 186.0352 530.9064

33.4978 94-9139 185.1218 527-3572

}2.001}

95.2772

191.5197

350.4543

645.2705

6O5.0374

587.0817

33.6062

95.2198

186.o352

330,9064

605.0574

1,291.820

1,201.750

53.4978

94.9139

185.1218

327.3572

587.o817

1,2Ol.73o

7,722.306

g12 =
10-8

I 0.357139 2.51667

0.416251 -35.7211

0.372644 -42,3980

0.304273 -37.4011

0.250619 -31.1834

0.222539 -27.4213

0.2223}0 -27.5427

4.23019 4. 88750 4.53501 2.48129 6.66447

-55.9270 -22.0109 -7.57499 -0.649586 5.97644

-119.9726 -96.6797 -46.7637 -11.9076 -6.58982

-119.2887 -281.2545 -178.1168 -52.0014 -_0.0105

-98.9304 -252.5471 -667.5713 -235.6575 -41.7552

-84.4719 -204.4838 -526.4627 -1,935.246 43.6259

-83.9134 -200.8741 -500.0124 -I,789.626 -49,687.76

-0.376591 -0.457242 -0.564781 -0.245316 -0.136065 -0.0606687 -0.105750 |

-0.437242 45.2112 47.7417 34.7671 18.8111 6.86554 11.6145 I-0.364781 47.7417 157.5055 138.0318 79.2549 28.5229 43.0942

= i0 -I0 -0.245316 34.7671 138.0318 438.0681 313.1202 113.7636 137.7855
g22 -0.156065 18.8111 79-2549 315.1202 1,411.054 593.1698 457.5185

I-0.0606687 6.865}4 28.5229 113.7656 593-1698 6,992.212 3,676"822 1

L -0.105730 11.6145 43.0942 137.7855 457.5185 },676.822 511,958.0J
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TABLE VI.- COMPARISON OF VIBRATION FREQUENCIES

Mode

First

Second

Third

Fourth

Symmetric modes Antisymmetric modes

Frequency, cps Frequency, cps

Experimental

43.3

88.8

122.8

164.2

Theoretical

46.4

lO5.3

15o.o

202.0

Error,

percent

7.16

18.98

22.15

23.o2

Experimental

92.2

91.7

13m.l

169.2

Theoretical

56.70

103.4

166.6

216.9

Error,

percent

8.43

12.77

27.O8

27.99
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TABLE Vll.- THE _ COEFFICIENTS FOR SYMMETRIC AND ANTIS_IC MODES

First symmetric mode First antisymmetric mode
Station,

n _O,n _l,n _2,n _2,n

-1.4862
-1.3789

-i.0651

-•5229

.2582
1.2596

2.4220

5.6672

0.024457

.o2532o

.020134

.014959

.007699

-.001205

-.011701

-.014848

-0.00005546

-.o0oo54o4
-.0o0o5258
-•0o0o570o
-•ooo0728o
-.00010434
-.00009519

-. 00069212

_O,n _l,n

0 0

-.0512 .005752

-.I154 .013151

-.2687 •021059

-.5137 .028935

-.8625 .056493

-1.2995 .@+5408

-1.7963 .045575

0

•OOOOOO17

-.00001392

-•00002562

-.0OOO2058
.00001118

•00006029

.00050698

Second symmetric mode Second antisymmetric mode
Station,

n _O_n _l,n _2,n _O,n _ijn _2,n

O. 2255

.2154

•1974

.1804

.1983

.2954

.4930

.7925

-0.OO9340

-.01O401

-.013968

-.019120

-.025141

-.031593

-.037493

-.041011

O.OOO12448

.000152[7

.00015982

.ooo19o49

•00020154

.00016650

.00003626

-.00052598

0

.3181
•6018

.7396

.6272

.1908

-.5527

-1.5269+

0

-.0o6_77

-.013888
-.Ol9110

-.019885

-.014828

-.O04515
.003366

0

-.OOOOOO5O

.00001913

.oo0o40o5
•oooo5855
.0oo08543
.OOO14015

.00100000

Third symmetric mode Third antisymmetric mode

Station,

n _O,n @2,n _2,n

-0 •0682
.0204
• 1029

.2486

.5240

•2105
-. 1625

-. 8ol].

_l,n

-o.0o556o o
-.OO6566

-.O08858
-.Olii15

-.011129

-.006905

.001761

.o10870

•0o0o9155
.0o0o9484
.00010195

.00OO9855

.0OOO7847
•00005602

.0O0O9912

•00093706

@O,n _l,n

0 0

-.06A3 -.001502

-.1578 .002960
-.2096 .012590

-.2].07 .026505

-.2266 .041626

-.5680 .055467

-•7626 .062547

0

.00000042

-.00006281

-.0oo].85].4
-.00055897

-.00045595
-.0oo2].6o8

• 0o10000o

Fourth symmetric mode Fourth antisymmetric mode
Station,

n _O,n _l,n _2,n $2,n

o.4506
.5874
.1998

- .0619

- .2976
-,56_9
-.1756

.2505

-0.025574

-.025308

-.014407

.000218

.o1852o

.033068

.o55897

.029159

0.00025855
.ooo255o9

.o0015547

.0o000601

-.o0o1855o
-.00053811

-.00028145

-.0o055149

_O,n _l,n

0 0

-.0964 .0o2070

-.1062 .000798

-.0097 -.005736

.1522 -.009525

•2573 -.011913

.o574 -.oo59_8
-.5128 .0O7559

0

-.00000012

.00002517

.0O006835

.000109_5

.00010629

.0o0o9922

.0oo9616o
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Figure i.- Diagram of wing specimen showing construction, stations used

in the analysis, and coordinate system.
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(a) Symmetric modes.
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(b) Antisyn_netric modes.

Figure 2.- Node-line patterns for free-free natural modes.
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Deflection,
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(a) Three-point support.

Figure 3.- Deflection of delta-wing specimen under uniform load of i psi.
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Deflection,

inches

.5
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<>
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Theoretical,with shear

Theoret ico I, without shear

Experimental

_. _ Sta. I

72 96

Distance from trailing edge, inches

(b) Cantilever support.

Figure 3.- Concluded.

NASA- Langley Field, Va. L-154
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